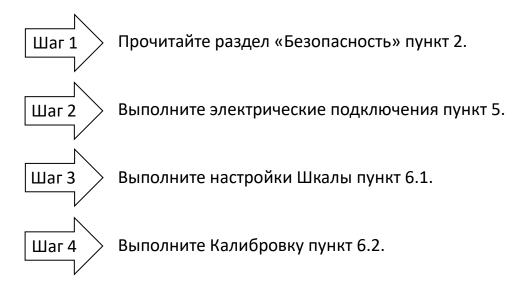


Руководство по эксплуатации



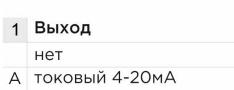
Оглавление

1	Кра	аткая инструкция	. 2
2	Без	опасность	. 2
3	Обі	щее описание	. 2
3	3.1	Назначение	. 2
3	3.2	Конфигурация	. 3
3	3.3	Технические характеристики	. 3
3	3.4	Габаритные и присоединительные размеры	. 4
4	Стр	уктура	. 4
4	ļ.1	Структурная схема	
5	Под	дключения	. 5
į	5.1	Питание	. 5
į	5.2	Подключение тензодатчиков	. 5
į	5.3	Интерфейс RS-485	. 5
į	5.4	Дискретные входы	. 5
6	Had	стройка	. 6
6	5.1	Шкала	. 6
6	5.2	Калибровка	. 6
6	5.3	Параметры	. 7
(5.4	Связь	. 8
6	5.5	Сервис	. 9
Пр	ило	жение №1. Формат «pixel»1	10
Со	вме	стимость руководства по эксплуатации1	12
Га	ранті	ия1	12

1 Краткая инструкция

2 Безопасность

Перед первым использованием изделия внимательно ознакомьтесь с настоящим Руководством.


3 Общее описание

3.1 Назначение

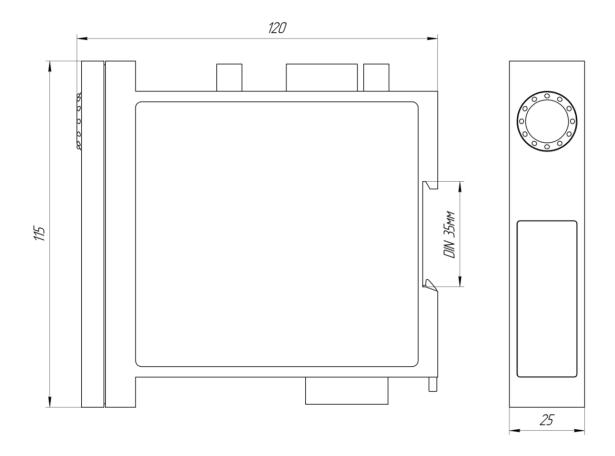
Весовой преобразователь — предназначен для преобразования сигнала с тензодатчика с целью передачи в последующие устройства.

3.2 Конфигурация

Пример:

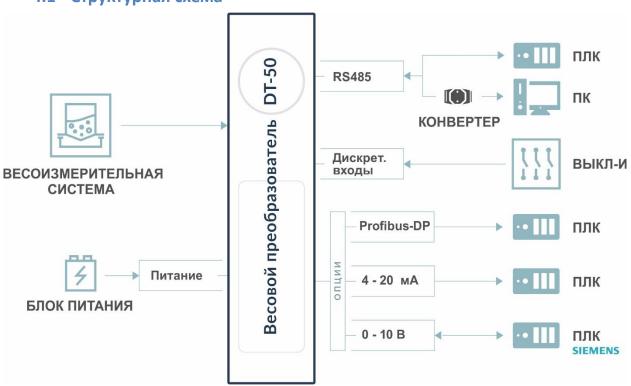
DT-50(A) - весовой преобразователь DT-50 с токовым выходом 4-20мА.

3.3 Технические характеристики


Функции:

- Интерфейс связи RS-485;
- Дискретные входы;
- OLED дисплей;
- Выход 4-20 мА (опция).

Параметры:


- Напряжение питания: DC 8-28 В, потребляемая мощность до 6 Вт;
- Напряжение питания тензодатчиков, 5 В (знакопеременное), макс. 120 мА - параллельное подключение до 9 тензодатчиков по 350 Ω или 20 тензодатчиков по 750 Ω;
- Разрядность АЦП: 24 бит.;
- Диапазон измерений: 39...39 мВ;
- Нелинейность, %: 0,001;
- Максимальное число преобразований раз/сек: 1200;
- Диапазон индикации: –9999999...999999;
- Диапазон рабочих температур: от –30°С до +70°С;
- Крепление DIN35;
- Вес, кг: 0,25;
- Габаритные размеры, мм: 115х25х120.

3.4 Габаритные и присоединительные размеры

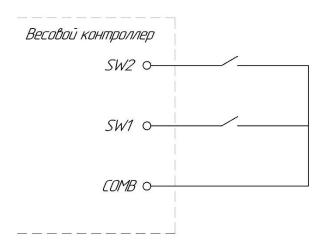
4 Структура

4.1 Структурная схема

5 Подключения

5.1 Питание

Клемма	Значение	Примечание
+	Питание +	Использовать источник DC 8-28 B.
_	Питание –	Потребляемая мощность до 6 Вт.


5.2 Подключение тензодатчиков

Клемма	3начение	Примечание
EX+	Питание датчика +	При использовании
SEN+	Линия компенсации датчика +	четырехпроводного
SIG+	Сигнал датчика +	датчика установите
SHLD	Экранированный кабель датчика	перемычку между
SIG-	Сигнал датчика –	EX + и SEN +, и
SEN-	Линия компенсации датчика –	перемычку между
EX-	Питание датчика –	EX— и SEN—

5.3 Интерфейс RS-485

Клемма	Значение
Α	А клемма.
В	В клемма.
SHILD	Общая земля.

5.4 Дискретные входы

Примечание: Срабатывание происходит в случае замыкания на время не менее 10 мс.

6 Настройка

6.1 Шкала

Настройте шкалу в соответствии с конструкцией ваших весов.

d – дискрета, цена деления шкалы;

НПВ – наибольший предел взвешивания.

6.2 Калибровка

Важно: Перед калибровкой необходимо выполнить настройку шкалы, до тех пор калибровка не доступна.

Полная калибровка

Выполняется за 2 действия:

Шаг 1. Калибровка 0

Подсказки:

- Используйте эталонный груз не менее 5%, а для высокоточных систем не менее 50% от НПВ;
- Необязательно использовать эталонные гири. Используйте любой груз предварительно взвесив его.

После калибровки отображается отчет:

ДО – диапазон колебания веса при калибровке О, измеряется в дискретах.

ДЭ – диапазон колебания веса при калибровке эталоном, измеряется в дискретах.

Стабильность – суммарная оценка весов при калибровке.

Корректировка нуля

Корректировка нуля позволяет выполнить калибровку нуля без калибровки эталоном, например, когда изменился вес платформы весов. Процедура выполняется аналогично полной калибровке, при этом шаг 2 отсутствует.

6.3 Параметры

Взвешивание

Параметр	Описание
Обнуление при	Допустимый диапазон в % от НПИ, при котором
включении	происходит автоматическое обнуление при
	включении.
Ручное обнуление	Допустимый диапазон в % от НПИ, при котором
	разрешается ручное обнуление (с использованием
	дискретных входов).
Функция тара	Допустимый диапазон в % от НПИ, при котором
	разрешается взятие тары (с использованием
	дискретных входов).
Диапазон шкалы	[+]— шкала от 0 до 100%.
	[+/–]– шкала от -100% до 100%.

Фильтры

Скорость АЦП	Частота измерений, раз/сек.
--------------	-----------------------------

Дискретные входы

Вход 1	[Тара] – Функция «тара».
Вход 2	[Ноль] – ручное обнуление.
	[Посылка] — сквозная посылка на RS-485 (функция
	в разработке).

Экран

Параметр	Описание
Режим Сна	[Динамический] – экран гаснет при стабильном
	весе и загорается при изменении веса.
	[Полный] – экран гаснет не зависимо от изменений
	веса и загорается при входе в меню.
Экран в режиме сна	[Ничего] – ничего не отображается.
	[Лого] – отображается логотип.
Логотип	Выбор предустановленного логотипа.
Тип	[Вес] – числовое значение веса и единиц
	измерений.
	[График] – графическое отображение в % от НПИ.

Токовый выход

Режим	[4-20] – 4 мА это 0%; 20 мА это 100%.
	[12±8] – 4 мА это -100%; 20 мА это 100%.

Оптимизация

Отслеживание нуля	Компенсируется медленное изменение веса близкое к нулю. Например, при температурном дрейфе датчиков или при запылении платформы весов. Измеряется в d/ceк. Чем выше значение, тем
	более активно работает компенсация.
Термокомпенсация	Дополнительная сверхточная компенсация сигнала
	в зависимости от окружающей температуры
	весового преобразователя (функция в разработке).

6.4 Связь

Формат

Параметр	Описание
Формат	[pixel] – (см. «Приложение №1»).
	Примечание: возможно добавление любого формата
	по согласованию с заказчиком, при заказе большой
	партии.

Параметры формата

Этот раздел меню зависит от выбранного формата связи, смотри приложение соответствующее выбранному формату.

Интерфейс

Параметр	Описание
Скорость	Скорость передачи данных.
Бит данных	[7], [8].
Четность	[even] – чёт.
	[odd] — нечет.
	[no] – Нет.
Стоп.бит	[0,5], [1], [1,5], [2].
Адрес прибора	0-32

6.5 Сервис

Диагностика

Параметр	Описание					
Сигнал датчика	Условный сигнал датчика в мВ.					
Дискретные выходы	«0» - вход не активен.					
	«1»- вход активен.					
Серийный номер	Серийный номер прибора.					
Версия прошивки	1.06					
Посылка	Прибор отправляет посылку «DEMO» в ASCII-кодах					
	на интерфейс RS-485.					
Токовый выход	Условный сигнал токового выхода в мА.					
Счетчик сбросов	Общее количество сбросов.					
Температурный	Температура внутри прибора (функция					
сенсор	в разработке).					

Сброс

Сброс параметров	Сброс только раздела «Параметры».				
Полный сброс	Сброс до состояния поставки (кроме счетчика сбросов).				

Приложение №1. Формат «pixel»

Параметры формата:

Параметр	Описание			
Режим передачи	[По запросу]			
	[Непрерывный]			
Тип веса	[НЕТТО] – передавать вес НЕТТО			
	[<i>БРУТТО</i>] – передавать вес БРУТТО			

Режим «Непрерывный»

Посылка (10 байт)

E	5лок	1	2					3			
Е	Байт	0	1	2	3	4	5	6	7	8	9

Блок 1: Байт 0. Знак веса в ASCII

Знак плюс: « » (0х20) Знак минус: «-» (0х2d) Блок 2: Байты 1–7. Вес в ASCII Цифры: «0-9» (0х30-0х39)

Точка: «.» (0x2e) Пробел: « » (0x20)

Блок 3: Байты 8-9. Завершающая последовательность

CR LF (0x0d 0x0a)

Пример:

 Вес 0.0кг
 [0x20 0x20 0x20 0x20 0x20 0x30 0x2e 0x30 0x0d 0x0a]

 Вес 39.0кг
 [0x20 0x20 0x20 0x20 0x33 0x39 0x2e 0x30 0x0d 0x0a]

 Вес -219.0кг
 [0x2d 0x20 0x20 0x32 0x31 0x39 0x2e 0x30 0x0d 0x0a]

Режим «По запросу»

Запрос (6 байт)

Блок	11	L	14	2	3		
Байт	0	1	2	3	4	5	

Блок 1: Байты 0–1. Адрес прибора в ASCII

Пример: «01» (0х30 0х31)

Блок 2: Байты 2—3. Команда в ASCII Запрос веса: «RW» (0x52 0x57) Обнуление: «MZ» (0x4D 0x5A)

Тарирование: «МТ» (0х4D 0х54)

Блок 3: Байты 4-5. Завершающая последовательность

CR LF (0x0d 0x0a)

Ответ

На команду	Ответ
RW	Посылка 10 байт, описание см. режим «Непрерывный»
MZ	В ответ присылает запрос (6 байт)
MT	В ответ присылает запрос (6 байт)

Сообщения об ошибке

Ошибка	Причина
«!» CR LF (3 байта)	Невозможно выполнить команду
[0x21 0x0d 0x0a]	
«?» CR LF (3 байта)	Ошибка в запросе
[0x3F 0x0d 0x0a]	
«E» CR LF (3 байта)	Прибор в состоянии ошибки
[0x3F 0x0d 0x0a]	

Совместимость руководства по эксплуатации

Таблица совместимости:

Текущая	Версии руководства по эксплуатации	Прошивка	Версия прибора	
	1.02 от 27.02.2023	1.01-1.06	1	
✓	2.01 от 7.10.2024	1.07	2	

Гарантия

Мы предоставляем один год гарантийного обслуживания с даты продажи оборудования на все поломки без видимых признаков вмешательств (самостоятельный ремонт и т.п.) и в условиях правильной эксплуатации.

Внимание: мы постоянно улучшаем наше оборудование, поэтому данное руководство может несущественно отличаться от поставляемого оборудования. При обнаружении несоответствия обратитесь к производителю за новой версией документации или получите консультацию.